Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gustavo Portalone* and Marcello Colapietro

Chemistry Department, University of Rome I 'La Sapienza', P.le A. Moro, 5, I-00185 Rome, Italy

Correspondence e-mail: g.portalone@caspur.it

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.043$
$w R$ factor $=0.132$
Data-to-parameter ratio $=34.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Redetermination of ammonium oxalate oxalic acid dihydrate

The crystal structure of the triclinic form of the title compound, $\mathrm{NH}_{4}{ }^{+} \cdot \mathrm{C}_{2} \mathrm{HO}_{4}{ }^{-} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, has been redetermined, providing a significant increase in the precision of the derived geometric parameters. The asymmetric unit comprises an ammonium cation, an oxalate anion, half each of two oxalic acid molecules, each disposed about a centre of inversion, and two water molecules of crystallization.

Comment

For some time now, we have studied co-crystals of DNA/RNA pyrimidine bases with amino derivatives of aromatic N heterocycles via multiple hydrogen bonds (Brunetti et al., 2000, 2002; Portalone et al., 1999, 2002; Portalone \& Colapietro, 2004a,b) as examples of supramolecular structures. Recently, attention has been devoted to polymorphic compounds as useful co-crystallizing agents (Bernstein, 2002; Portalone \& Colapietro, 2004b). Since oxalic acid and oxalates are known to exist in different crystalline forms, we have been interested in the study of tetroxalates, i.e. the superacid salts of general formula $M \mathrm{H}_{3}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, with $M=\mathrm{NH}_{4}, \mathrm{~K}, \mathrm{Rb}, \mathrm{Cs}$, or Tl , which are isomorphous in the triclinic crystal system. Despite numerous crystal-growth experiments involving slow evaporation and liquid or vapour diffusion using a number of solvents, we were only able to isolate single crystals of ammonium tetraoxalate (atoxal), (I).

(I)

The crystal structure of (I) was originally determined by neutron diffraction some 40 years ago (Currie et al., 1967). That work was of remarkable precision for the time: 1731 independent reflections (1226 of these having values significantly above background) were measured and used in the refinement. The final block-diagonal least-squares refinement gave $R=0.089$ for 180 refined parameters. The current reinvestigation confirms and amplifies Currie's work, providing a much lower R value and a significant increase in the precision of the geometric parameters, viz. $\sigma(\mathrm{C}-\mathrm{C})=0.0007-$ $0.0011 \AA$ in the present work, compared with $0.006-0.010 \AA$ in the earlier work.

The asymmetric unit of (I) comprises a planar oxalate anion, two half-molecules of oxalic acid, each disposed about a
\qquad

Figure 1
The asymmetric unit of (I), together with additional atoms to complete the two oxalic acid molecules. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. Unlabelled atoms in the C 1 molecule are related to labelled atoms by the symmetry operator $(-x+1,-y+1,-z+1)$. Unlabelled atoms in the C 2 molecule are related to labelled atoms by the symmetry operator $(-x+1,-y,-z+1)$.

Figure 2
The packing of (I), showing the hydrogen-bonding scheme projected normal to (100). Displacement ellipsoids are at the 50% probability level. Dashed lines indicate hydrogen bonds.
centre of inversion, an ammonium cation and two water molecules (Fig. 1). The corresponding bond lengths and angles of the independent molecules in the asymmetric unit show small differences, which can be attributed to different hydrogen-bonding configurations (Table 1).

Consistent with the earlier study (Currie et al., 1967), in the crystal structure of (I) the intricate three-dimensional network (Fig. 2) is sustained by seven medium to strong hydrogen bonds between O atoms, with $\mathrm{O} \cdots \mathrm{O}$ distances in the range 2.4731 (8)-2.8959 (9) A. Four intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions complete the hydrogen-bonding system.

Subunits of the oxalic acid molecules, one oxalate anion and two water molecules form infinite chains running along the [011] direction via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. These chains are connected transversely by the two independent water molecules and the ammonium cation through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and
$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The three very strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds all have carboxyl groups as H -atom donors, and the two independent water molecules participate as H atom acceptors. The corresponding $\mathrm{H} \cdots \mathrm{O}$ distances range in length from 1.46 (2) to 1.52 (2) \AA [1.399 (7) -1.493 (9) \AA in Currie's neutron diffraction work). Considering the hydrogen bonding as an incipient H -atom transfer reaction (Jeffrey, 1997; Steiner, 2002), the stage of H -atom transfer in (I) is quite advanced. The remaining four, weaker, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds have the two independent water molecules as H -atom donors.

Experimental

Compound (I) (Fluka; 99\% purity) was recrystallized from water by slow evaporation.

Crystal data

$\mathrm{NH}_{4}{ }^{+} \cdot \mathrm{C}_{2} \mathrm{HO}_{4}{ }^{-} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=233.14$
Triclinic, $P \overline{1}$
$a=6.3387$ (8) A
$b=7.2227$ (9) \AA
$c=10.5527$ (11) \AA
$\alpha=94.172(10)^{\circ}$
$\beta=100.274(10)^{\circ}$
$\gamma=97.704(10)^{\circ}$

$$
\begin{aligned}
& V=468.77(10) \AA^{3} \\
& Z=2 \\
& D_{x}=1.652 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.17 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.30 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Huber CS four-circle diffractometer ω scans
Absorption correction: none 6934 measured reflections 6283 independent reflections 5265 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.021 \\
& \theta_{\max }=42.0^{\circ} \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0705 P)^{2}\right. \\
& \quad+0.0474 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.44 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right.$).

$\mathrm{O} 1-\mathrm{C} 1$	$1.2219(7)$	$\mathrm{O} 7-\mathrm{C} 4$	$1.2586(8)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.2912(8)$	$\mathrm{O} 8-\mathrm{C} 4$	$1.2392(7)$
$\mathrm{O} 3-\mathrm{C} 1$	$1.2867(8)$	$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.5464(10)$
$\mathrm{O} 4-\mathrm{C} 2$	$1.2155(8)$	$\mathrm{C} 2-\mathrm{C} 2^{\mathrm{ii}}$	$1.5386(11)$
$\mathrm{O} 5-\mathrm{C} 3$	$1.2970(8)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.5483(7)$
$\mathrm{O} 6-\mathrm{C} 3$	$1.2150(7)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 3$	$126.54(5)$	$\mathrm{O} 6-\mathrm{C} 3-\mathrm{O} 5$	$125.20(5)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$120.29(7)$	$\mathrm{O}-\mathrm{C} 3-\mathrm{C} 4$	$121.59(5)$
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$113.16(6)$	$\mathrm{O} 5-\mathrm{C} 3-\mathrm{C} 4$	$113.21(5)$
$\mathrm{O} 4-\mathrm{C} 2-\mathrm{O} 2$	$126.72(6)$	$\mathrm{O} 8-\mathrm{C} 4-\mathrm{O} 7$	$127.69(5)$
$\mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 2^{\mathrm{ii}}$	$120.98(7)$	$\mathrm{O} 8-\mathrm{C} 4-\mathrm{C} 3$	$117.30(5)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 2^{\mathrm{ii}}$	$112.30(6)$	$\mathrm{O} 7-\mathrm{C} 4-\mathrm{C} 3$	$115.00(5)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+1,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H6 . . 99	1.016 (18)	1.459 (18)	2.4731 (8)	175.7 (17)
$\mathrm{O} 3-\mathrm{H} 7 \cdots \mathrm{O} 7^{\text {iii }}$	1.042 (19)	1.463 (19)	2.4974 (7)	171.3 (18)
O5-H5 . O10	0.995 (16)	1.517 (16)	2.5120 (8)	177.4 (14)
$\mathrm{O} 9-\mathrm{H} 2 \cdots \mathrm{O}^{\text {iv }}$	0.838 (16)	1.913 (17)	2.7476 (9)	173.4 (15)
$\mathrm{O} 9-\mathrm{H} 1 \cdots \mathrm{O} 8^{\text {iii }}$	0.89 (2)	1.85 (2)	2.7231 (8)	166.7 (18)
$\mathrm{O} 10-\mathrm{H} 4 \cdots \mathrm{O} 1^{\text {v }}$	0.879 (19)	2.06 (2)	2.8959 (9)	158.3 (16)
$\mathrm{O} 10-\mathrm{H} 3 \cdots \mathrm{O} 4^{\text {ii }}$	0.94 (2)	1.92 (2)	2.8311 (8)	162 (2)
N1-H8...O1	0.90 (2)	2.079 (19)	2.9466 (8)	162.0 (17)
$\mathrm{N} 1-\mathrm{H} 9 \cdots \mathrm{O}^{\text {vi }}$	0.866 (18)	2.101 (18)	2.9359 (9)	161.6 (15)
$\mathrm{N} 1-\mathrm{H} 10 \cdots \mathrm{O}^{\text {vii }}$	0.89 (2)	2.09 (2)	2.9671 (8)	166 (2)
$\mathrm{N} 1-\mathrm{H} 11 \cdots \mathrm{O} 8$	0.903 (16)	2.058 (16)	2.9275 (9)	161.2 (14)

Symmetry codes: (ii) $-x+1,-y,-z+1$; (iii) $-x+1,-y+1,-z$; (iv) $-x+1,-y,-z$; (v) $-x+2,-y+1,-z+1$; (vi) $x+1, y+1, z$; (vii) $x, y+1, z$.

All H atoms were found in a difference map and refined freely; $\mathrm{O}-\mathrm{H}=1.00$ (2)-1.04 (2) Å for oxalic acid and 0.84 (2)-0.94 (2) Å for water, and $\mathrm{N}-\mathrm{H}=0.87$ (2)-0.90 (2) \AA.

Data collection: XCS (Colapietro et al., 1992); cell refinement: $X C S$; data reduction: $X C S$; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3
(Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bernstein, J. (2002). Polymorphism in Molecular Crystals. Oxford: Clarendon Press.
Brunetti, B., Piacente, V. \& Portalone, G. (2000). J. Chem. Eng. Data, 45, $242-$ 246.

Brunetti, B., Piacente, V. \& Portalone, G. (2002). J. Chem. Eng. Data, 47, 1719.

Colapietro, M., Cappuccio, G., Marciante, C., Pifferi, A., Spagna, R. \& Helliwell, J. R. (1992). J. Appl. Cryst. 25, 192-194.
Currie, M., Speakman, J. C. \& Curry, N. A. (1967). J. Chem. Soc. A, pp. 18621869.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
Portalone, G., Ballirano, P. \& Maras, A. (2002). J. Mol. Struct. 608, 35-39.
Portalone, G., Bencivenni, L., Colapietro, M., Pieretti, A. \& Ramondo, F. (1999). Acta Chem. Scand. 53, 57-68.

Portalone, G. \& Colapietro, M. (2004a). Acta Cryst. E60, o1165-o1166.
Portalone, G. \& Colapietro, M. (2004b). J. Chem. Crystallogr. 34, 609-612.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

